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Abstract 

We consider reduced, affine hypersurfaces with only isolated singularities. We give an explicit 
computation of the Hodge-components of their cyclic homology in terms of de Rham cohomology 
and torsion modules of differentials for large n. It turns out that the vector spaces HC,(A) are 
finite dimensional for n 2 N - 1. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 19, 14, 13 

1. Introduction 

Let R = K[XI,&... ,X,I,] with K being an algebraically closed field of character- 

istic zero. Throughout this paper A denotes a reduced hypersurface with only isolated 

singularities given by A = R/(F), whith F E K[X~,&, . . . ,X,1. For a definition of the 

module of Kiihler differentials Qfi,K see for example [22, 8.8.1., p. 2941. The cohomol- 

ogy of the complex 

where d denotes the exterior differential, is called the de Rham cohomology of A and 

denoted by H&(A). In this paper we will compute the Hodge components H($)(A) 

of cyclic homology of a hypersurface with isolated singularities. We will use the iden- 

tification in [20] of the nth Hochschild homology groups with torsion submodules of 

differentials. Throughout this paper the torsion submodule of the (N - 1)st exterior 

power of the Kahler differentials will be denoted by T(S2E4’,‘). 
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Theorem 1. Let A be a reduced, afJine hypersurface over K with only isolated sin- 
gularities and let n > N. Then the Hodge-components of cyclic homology are given 

by: 

H@(A) 2~ 
T(Q$i’) $ H&-‘(A) if2i-n=N-1, 

H;;-“(A) otherwise. 

Summing up the Hodge-components, we get 

H&(A) 21 H&(A) @ H,$-‘(A) @ . . . if n E N mod 2, 

H&(A) N T(@,;‘) @ H&-‘(A) $ II$-~(A) @ . . . ifn=N- 1 mod 2. 

Hence we obtain a similar formula as obtained in the smooth case by Loday and 

Quillen in [ 151 with an extra nonzero term T(@&’ ) appearing for IZ > N. The shift 

operator S, see [ 141 for a definition, 

is no longer an isomorphism, see Corollary 1. For quasi-homogeneous hypersurfaces 

with isolated singularities Theorem 1 and Proposition 1 were already proved in [1X]. 

In the final section we demonstrate the algorithmic nature of our results by computing 

the cyclic homology and the de Rham cohomology of the nodal cubic. 

Remark. It is an immediate consequence of Theorem 1 and Lemma 1 below that for 

n 2 N - 1 all the cyclic homology groups HC,(A) are finite dimensional K vector 

spaces. 

For n 5 N we have: 

Proposition 1 (cf. Michler [18, Theorem 21). For n 5 N we compute H&(A) for re- 
duced hypersurfaces A with only isolated singularities: 

?,K 
d$&! 

if i=n, 

HCt)(A) N 
H%-“(A) for n/2 5 i < n, 

otherwise. 

2. Hedge-components of Hochschild and cyclic homology 

In [8] Gerstenhaber and Schack obtained a Hodge-decomposition 

HH,(A) = HH(‘)(A) @ . . . @ HH(“)(A) n n 

of the Hochschild homology HH,(A) of a commutative K-algebra A, where K is a 

field of characteristic zero. From [ 18, Theorem 1 and Lemma l] we know: 



Proposition 2. Let A be the coordinate ring of a reduced hypersurfuce of dimension 
N - 1 with only isolated singularities, then for n 2 N the Hedge-components of 
Hochschild homology are given by 

( 

T(qil) tf2i-n=N-1, 

HH$)(A) ~11 0’& if 2i - n = N, 

0 otherwise. 

For n < N we have 

if i = n, 
otherwise. 

Proposition 3 (Michler [20]). Let F E K[Xl , . . . ,XN] be a polynomial dejning a re- 
duced hypersurface with only isolated singularities in A:, where K is an algebraically 
closed field of characteristic zero. Then we have 

dimK T(@&‘) = dimK Q’&, 

where T(G$,,F' ) is the torsion submodule of SZ$‘, the (N - 1)st exterior power of 
the module of Kkhler dl~erentia~s. In particular we have, for I > 0, 

dimR HH~+~~’ = dime HHjv+zI_, @Q-t) = dimK T(~,~‘) = dimK @,, < oo, 

and ail other Hedge-components of Hochs~hi~d homology are zero. 

We use the Hodge-decomposition of Hochschild homology to determine the Hodge- 

components of cyclic homology (cf. [ 141): 

HC,(A) = H@)(A) $ H@)(A) @ . . . @ H@“)(A) n n n ’ 

There is also a long exact S - B - I sequence [ 131, 

. . . --+ m;)(A) r, HC;)(A) -s, HCI1Z,‘)(A) $ ~~~~(A) r, . . . . 
We will also need the following result (cf. [3, Theorem 3.171): 

Lemma 1. Let A be the coordinate ring of a reduced a#ine hypersurface with only 
isolated singularities dejined over an algebraically closed field K of characteristic 
zero, then the de Rham cohomology groups H&(A) are finite dimensional K-vector 
spaces. 

Proof. Let X = Spec(A) be the hypersurface in question. Replacing complex analytic 

space by algebraic variety over K and the reference to Grauert in the proof by [9, 

3.2.11 in 13, Theorem 3.171, we get: Let X be an algebraic variety over K and x an 

isolated singular point. Then the cohomology groups of the complex 
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are finite dimensional K-vector spaces. Next we note that ~~(A) is the global sections 
of the (quasi-coherent) sheaf %‘& on Spec(K). If we denote the singular locus by Z 
and X - Z by U, then for all i > 0 we get an exact sequence of sheaves: 

The result now follows on taking global sections, since by [lo] the Ii”(&,‘,‘I~) are 
finite dimensional vector spaces and by [3] the @?(%A) are also finite dimensional. 

3. Proof of the main theorem 

In this section we let A, K be as in the introduction. The following Lemmas 2, 4, 5 
and Corollary 1 will establish Theorem 1: 

Lemma2.ZfO<2i-niN-3or2i-n>N+landn>N,then 

H($)(A) N H;;--“(A). 

Moreover, for 2i - n 2 N + 1 we have HC$)(A) = 0. 

Proof. From the S - B - Z sequence and our computation of the dodge-components 
of Hochschild homology we see 

HCt)(A)zHC:-‘)(A) for2i-n<N-3 or2i-nZN+l. 

Write n = N + 21, then we have 

H@(A) N HC$-‘)(A) cv H&-2’-N(A) = H;;-“(A). 

If n = N t 2Z- 1 then 

H@(A) Y H&‘:‘)(A) N Hz’-2’++’ n N 1 dR (A) = @-‘(A). 

For 2i - n 2 N + 1 we have that H%-“(A) = 0, since A is afhne. Cl 

The key ingredient in the proof is the following lemma: 

Lemma 3. Let A be as before and assume 2i - n = N with n 2 N, then the map 
B : HCtIi)(A) --+ HH$)(A) is surjective. 

Proof. If i = n = N, then we know that HC$I:)(A) z @&‘/dG‘&” and since 

d: &$,;I ---) Q& is smjective, the result follows by [15, Proposition 2.21. By 1121 
we have, for i > N, 
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where the ith homogeneous part of the Koszul-complex is given by 

Kos*(F/F2 --+ A 8 L&)i : 

Moreover, Feigin and Tsygan [6] show that 

0 --f KOS* + D* --+ D*-’ --i 0, 

where the complex (D*)i is given by 

t . . . + R/F’+‘R + 0. 

295 

The cohomology of this complex computes the ith level crystalline cohomology (cf. 

[6].) We then get the following long exact sequence on homology, see [16]: 

+ HN-l(Kos;+r_i > -+ H’+‘(D;+/) + HN-‘(D;+[_I) + HN(Kos;J+r) + 

HN-l(D;+l_,) = 
Ker($$‘/F’+‘G&’ + s2&/F’sZ&) 

Im(Q&2/F1+2Q&2 -+ Q&l/F1+lQ&l)’ 

In [6] Feigin and Tsygan define K-vector space isomorphisms 4, $ for all indices n. 

From their Theorem 5 [6, p.1301, we get that for any positive integer 1 the following 

diagram commutes: 

In the above long exact sequence E : HN-'(DT_, ) -+ HN(Ko$) is the connecting 

homomorphism. Since the Kahler map d : L?&’ + L?‘& is surjective, the induced map 

2 : Q$‘/Fk+‘Q$’ + Q&/F”Q& for all integers k > 0, 

is surjective as well. Hence HN(Dg+[) is zero and the result follows by [6, Theorem 51. 

0 

Let 2i - n = N with n > N and consider the following sequence, which is exact by 

Proposition 2: 

(*) 0 + HCzifl,(A) 5 HC;-‘)(A) 3 HH;;,(A) i, HC;i,(A) 3 

5 HC;:;) (A) -% HHt)(A) L H@(A) 5 HC;:;)(A) -+ 0. 
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Corollary 1. Let 2i - n = N with n 2 N as before, then: 
(a) H@(A) = 0. 

(b) I : HHt)(A) + HCt)(A) is the zero map. 
(c) if n > N then the map S : HC!‘) (A) -+ HC(‘-‘) n+l n_, (A) is not surjective. 

Proof. Note that we have HCy)(A) = H&(A) = 0. The results then follow from the 

exactness of the part (*) of the S-B-Z sequence, Lemma 3 and induction. In particular 

we have that: coker(S : HCfi,(A) + HCfIi’)(A)) P Qf& # 0. 

Lemma 4. If 2i - n = N with n 2 N then, B : HCt-‘)(A) -+ HHzi,(A) is the zero 
map and we have: 

HC;;,(A) & H&‘)(A) 21 Hg-2(A). 

In particular H@(A) is jinite dimensional. 

Proof. From Proposition 1 we know that HCr-‘)(A) = HzP2(A). By [6] we have 

that 

for all I 2 1. Moreover, from (*) and induction on i we know that the S maps 

S : HCf;,(A) +-+ HC, (i- “(A) are injections. Hence we get injections from HCzl,(A) 
into HfRe2(A). 

On the other hand, we know by [2, Theorem 5(b)] that dimKHN-2(D~_2+I) 2 

dimKHgm2(R/F’R). Since F is reduced we have by [22, Exercise 9.9.5 p. 3591 

that Hge2(R/F’R) = Hge2(A). Hence we have for all 1 2 1 that HCr_;$/(A) = 
H&-2(A). 0 

Corollary 2. Again let 2i - n = N with n 2 N, then: 
(a) The map Z : HHzl,(A) + HCzi,(A) is injective. 
(b) dimKHC!-‘)(A) < 00. 

Lemma 5. Let 2i - n = N with n 2 N, then: 
(a) dimK HCfI;)(A) = dim, @-‘(A) + dimK r(q,;‘). 

(b) Ker(B : HCfIi’(A) + HH:)(A)) 2~ H,&-‘(A). 

Proof. By Lemmas 3 and 4 we can split up (*) as follows: 

0 + HHzi,(A) 5 HCzi,(A) 5 Im(,S) + 0, 

and 

0 -t Ker(B) + HCzI:)(A) f+ HHt)(A) + 0, 

where Ker(B) = Im(S). By induction on i we then know that all HCfi,(A)‘s have 

the same dimension. If i = n = N then by [15] we have Ker(B : HCr_y’)(A) + 
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HHr’(A)) N Hg-‘(A j. (Note that both T($&‘) and H;-‘(A) are finite dimensional 

vector spaces.) Hence we have that 

dim, HC~_~‘)(A) = dimK z = dimK H&-‘(A) + dimK Q& 

AIK 

= dimK Z’(Q’$l) + dimK H&-‘(A), 

where the last equality follows from Proposition 3. 0 

Corollary 3. If A is a hypersurface with only isolated singularities over an alge- 
braically closed field K of characteristic zero, then for n > N - 1 we have that the 
nth pieces of cyclic homology are finite dimensional vector spaces. Moreover, the 
dimension of HC,(A) only depends on the parity of n for n > N. 

4. Cyclic homology of the nodal cubic 

This section contains an explicit description of the Hodge-components of the plane 

nodal cubic defined by F(x, y) = y2 - x2(x + 1 j, i.e., 

A = K[x, y]/(y2 - x3 - x2). 

In particular we give bases for its de F&am cohomology modules. This example was 

also mentioned in [7, cf. A.61, where a different approach to finding HC,(A) was 

suggested. We have: 

Proposition 4. The de Rham cohomology of the nodal cubic is given by 

H&(A) = K, H&(A) E K . x2dy + dA, H&(A) = 0. 

Proof. The coordinate ring of the nodal cubic is a domain. So we know that H&(A) = 
K. Moreover, sZ;,K = Kdx A dy, i.e., H&(A) = 0. Using the fact that 

ydy = (3x2 + 2xjdx 
2 

we have that 

$j,K (K . xdy + K . x2dy + b4) 

dA dA 

Hence 

H&(A) = Ker(d : Q,!,,KjdA + Q;,,) = (K . x2dy + dA)/dA. 

A generator for T(Qi,,) as an A-module is given by 

w=(;x+l)ydx-(x2+x)dy. 
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We sum up our findings in: 

Theorem 2. Let A be the coordinate ring of the nodal cubic dejined over an alge- 
braically closedjield K of characteristic zero by F = y2 -x2(x+ l), then H@)(A) = A 
and we have, for 1 > 0, 

H&(A) = H&(A) = K, 

and 

HCx+l(A) N T(O;,,) @ H&(A) 2~ K @K. 
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