

Journal of Pure and Applied Algebra 120 (1997) 291-299

JOURNAL OF PURE AND APPLIED ALGEBRA

Cyclic homology of affine hypersurfaces with isolated singularities

Ruth I. Michler*

Department of Mathematics, University of North Texas, Denton, TX 76203-5116, USA

Communicated by C.A. Weibel; received 20 September 1995; revised 17 January 1996

Abstract

We consider reduced, affine hypersurfaces with only isolated singularities. We give an explicit computation of the Hodge-components of their cyclic homology in terms of de Rham cohomology and torsion modules of differentials for large n. It turns out that the vector spaces $HC_n(A)$ are finite dimensional for $n \ge N - 1$. (© 1997 Elsevier Science B.V.

1991 Math. Subj. Class.: 19, 14, 13

1. Introduction

Let $R = K[X_1, X_2, ..., X_N]$ with K being an algebraically closed field of characteristic zero. Throughout this paper A denotes a reduced hypersurface with only isolated singularities given by A = R/(F), whith $F \in K[X_1, X_2, ..., X_N]$. For a definition of the module of Kähler differentials $\Omega^1_{A/K}$ see for example [22, 8.8.1., p. 294]. The cohomology of the complex

$$0 \to A \xrightarrow{d} \Omega^1_{A/K} \xrightarrow{d} \Omega^2_{A/K} \xrightarrow{d} \cdots \xrightarrow{d} \Omega^N_{A/K} \to 0 \to \cdots \to 0,$$

where d denotes the exterior differential, is called the de Rham cohomology of A and denoted by $H_{dR}^i(A)$. In this paper we will compute the Hodge components $HC_n^{(i)}(A)$ of cyclic homology of a hypersurface with isolated singularities. We will use the identification in [20] of the *n*th Hochschild homology groups with torsion submodules of differentials. Throughout this paper the torsion submodule of the (N - 1)st exterior power of the Kähler differentials will be denoted by $T(\Omega_{A/K}^{N-1})$.

^{*} E-mail: michler@unt.edu.

Theorem 1. Let A be a reduced, affine hypersurface over K with only isolated singularities and let n > N. Then the Hodge-components of cyclic homology are given by:

$$\operatorname{HC}_{n}^{(i)}(A) \simeq \begin{cases} T(\Omega_{A/K}^{N-1}) \oplus H_{\mathrm{dR}}^{N-1}(A) & \text{if } 2i-n=N-1, \\ H_{\mathrm{dR}}^{2i-n}(A) & \text{otherwise.} \end{cases}$$

Summing up the Hodge-components, we get

$$HC_n(A) \simeq H^N_{d\mathbb{R}}(A) \oplus H^{N-2}_{d\mathbb{R}}(A) \oplus \cdots \quad if \ n \equiv N \mod 2,$$

$$HC_n(A) \simeq T(\Omega^{N-1}_{A/K}) \oplus H^{N-1}_{d\mathbb{R}}(A) \oplus H^{N-3}_{d\mathbb{R}}(A) \oplus \cdots \quad if \ n \equiv N-1 \mod 2$$

Hence we obtain a similar formula as obtained in the smooth case by Loday and Quillen in [15] with an extra nonzero term $T(\Omega_{A/K}^{N-1})$ appearing for $n \ge N$. The shift operator S, see [14] for a definition,

$$S : \operatorname{HC}_{N+2l+1}^{(N+l)}(A) \mapsto \operatorname{HC}_{N+2l-1}^{(N+l-1)}(A)$$

is no longer an isomorphism, see Corollary 1. For quasi-homogeneous hypersurfaces with isolated singularities Theorem 1 and Proposition 1 were already proved in [18]. In the final section we demonstrate the algorithmic nature of our results by computing the cyclic homology and the de Rham cohomology of the nodal cubic.

Remark. It is an immediate consequence of Theorem 1 and Lemma 1 below that for $n \ge N - 1$ all the cyclic homology groups $HC_n(A)$ are finite dimensional K vector spaces.

For $n \leq N$ we have:

Proposition 1 (cf. Michler [18, Theorem 2]). For $n \le N$ we compute $HC_n(A)$ for reduced hypersurfaces A with only isolated singularities:

$$\operatorname{HC}_{n}^{(i)}(A) \simeq \begin{cases} \frac{\Omega_{A/K}^{n}}{d\Omega_{A/K}^{n-1}} & \text{if } i = n, \\ H_{dR}^{2i-n}(A) & \text{for } n/2 \leq i < n, \\ 0 & \text{otherwise.} \end{cases}$$

2. Hodge-components of Hochschild and cyclic homology

In [8] Gerstenhaber and Schack obtained a Hodge-decomposition

$$\operatorname{HH}_n(A) = \operatorname{HH}_n^{(1)}(A) \oplus \cdots \oplus \operatorname{HH}_n^{(n)}(A)$$

of the Hochschild homology $HH_n(A)$ of a commutative K-algebra A, where K is a field of characteristic zero. From [18, Theorem 1 and Lemma 1] we know:

Proposition 2. Let A be the coordinate ring of a reduced hypersurface of dimension N-1 with only isolated singularities, then for $n \ge N$ the Hodge-components of Hochschild homology are given by

$$\operatorname{HH}_{n}^{(i)}(A) \simeq \begin{cases} T(\Omega_{A/K}^{N-1}) & \text{if } 2i-n=N-1, \\ \Omega_{A/K}^{N} & \text{if } 2i-n=N, \\ 0 & \text{otherwise.} \end{cases}$$

For n < N we have

$$\operatorname{HH}_{n}^{(i)}(A) \simeq \begin{cases} \Omega_{A/K}^{n} & \text{if } i = n, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition 3 (Michler [20]). Let $F \in K[X_1,...,X_N]$ be a polynomial defining a reduced hypersurface with only isolated singularities in A_K^N , where K is an algebraically closed field of characteristic zero. Then we have

$$\dim_K T(\Omega^{N-1}_{A/K}) = \dim_K \Omega^N_{A/K},$$

where $T(\Omega_{A/K}^{N-1})$ is the torsion submodule of $\Omega_{A/K}^{N-1}$, the (N-1)st exterior power of the module of Kähler differentials. In particular we have, for l > 0,

$$\dim_K \operatorname{HH}_{N+2l}^{(N+l)} = \dim_K \operatorname{HH}_{N+2l-1}^{(N+l-1)} = \dim_K T(\Omega_{A/K}^{N-1}) = \dim_K \Omega_{A/K}^N < \infty,$$

and all other Hodge-components of Hochschild homology are zero.

We use the Hodge-decomposition of Hochschild homology to determine the Hodgecomponents of cyclic homology (cf. [14]):

$$\mathrm{HC}_n(A) = \mathrm{HC}_n^{(1)}(A) \oplus \mathrm{HC}_n^{(2)}(A) \oplus \ldots \oplus \mathrm{HC}_n^{(n)}(A).$$

There is also a long exact S - B - I sequence [13],

$$\cdots \to \operatorname{HH}_{n}^{(i)}(A) \xrightarrow{l} \operatorname{HC}_{n}^{(i)}(A) \xrightarrow{S} \operatorname{HC}_{n-2}^{(i-1)}(A) \xrightarrow{B} \operatorname{HH}_{n-1}^{(i)}(A) \xrightarrow{l} \cdots$$

We will also need the following result (cf. [3, Theorem 3.17]):

Lemma 1. Let A be the coordinate ring of a reduced affine hypersurface with only isolated singularities defined over an algebraically closed field K of characteristic zero, then the de Rham cohomology groups $H^i_{dR}(A)$ are finite dimensional K-vector spaces.

Proof. Let X = Spec(A) be the hypersurface in question. Replacing complex analytic space by algebraic variety over K and the reference to Grauert in the proof by [9, 3.2.1] in [3, Theorem 3.17], we get: Let X be an algebraic variety over K and x an isolated singular point. Then the cohomology groups of the complex

$$0 \to K \to \Omega^*_{X,x}$$

are finite dimensional K-vector spaces. Next we note that $H^i_{dR}(A)$ is the global sections of the (quasi-coherent) sheaf \mathscr{H}^i_{dR} on Spec(K). If we denote the singular locus by Z and X - Z by U, then for all $i \ge 0$ we get an exact sequence of sheaves:

$$0 \to \mathscr{H}^0_Z(\mathscr{H}^i_{\mathrm{dR}}) \to \mathscr{H}^i_{\mathrm{dR}} \to \mathscr{H}^i_{\mathrm{dR}}|_U \to 0.$$

The result now follows on taking global sections, since by [10] the $H^0(\mathscr{H}^i_{dR}|_U)$ are finite dimensional vector spaces and by [3] the $H^0_Z(\mathscr{H}^i_{dR})$ are also finite dimensional.

3. Proof of the main theorem

In this section we let A, K be as in the introduction. The following Lemmas 2, 4, 5 and Corollary 1 will establish Theorem 1:

Lemma 2. If
$$0 \le 2i - n \le N - 3$$
 or $2i - n \ge N + 1$ and $n > N$, then
 $HC_n^{(i)}(A) \simeq H_{dR}^{2i-n}(A).$

Moreover, for $2i - n \ge N + 1$ we have $\operatorname{HC}_{n}^{(i)}(A) = 0$.

Proof. From the S - B - I sequence and our computation of the Hodge-components of Hochschild homology we see

$$\operatorname{HC}_{n}^{(i)}(A) \simeq \operatorname{HC}_{n}^{(i-1)}(A)$$
 for $2i - n \le N - 3$ or $2i - n \ge N + 1$.

Write n = N + 2l, then we have

$$\mathrm{HC}_{n}^{(i)}(A) \simeq \mathrm{HC}_{N}^{(i-l)}(A) \simeq \boldsymbol{H}_{\mathrm{dR}}^{2i-2l-N}(A) = \boldsymbol{H}_{\mathrm{dR}}^{2i-n}(A).$$

If n = N + 2l - 1 then

$$\operatorname{HC}_{n}^{(i)}(A) \simeq \operatorname{HC}_{N-1}^{(i-l)}(A) \simeq H_{\operatorname{dR}}^{2i-2l-N+1}(A) = H_{\operatorname{dR}}^{2i-n}(A).$$

For $2i - n \ge N + 1$ we have that $H_{dR}^{2i-n}(A) = 0$, since A is affine. \Box

The key ingredient in the proof is the following lemma:

Lemma 3. Let A be as before and assume 2i - n = N with $n \ge N$, then the map $B: \operatorname{HC}_{n-1}^{(i-1)}(A) \to \operatorname{HH}_n^{(i)}(A)$ is surjective.

Proof. If i = n = N, then we know that $\operatorname{HC}_{N-1}^{(N-1)}(A) \simeq \Omega_{A/K}^{N-1}/d\Omega_{A/K}^{N-2}$ and since $d: \Omega_{A/K}^{N-1} \to \Omega_{A/K}^{N}$ is surjective, the result follows by [15, Proposition 2.2]. By [12] we have, for i > N,

$$\operatorname{HH}_{n}^{(i)}(A) = H^{2i-n}(\operatorname{Kos}^{*}(F/F^{2} \to A \otimes \Omega^{1}_{R/K})_{i}),$$

where the *i*th homogeneous part of the Koszul-complex is given by

$$\operatorname{Kos}^*(F/F^2 \to A \otimes \Omega^1_{R/K})_i:$$

$$0 \leftarrow \frac{F^{i-N}}{F^{i-N+1}} \otimes \Omega^N_{R/K} \leftarrow \left(\frac{F^{i-N+1}}{F^{i-N+2}}\right) \otimes \Omega^{N-1}_{R/K} \leftarrow \cdots \leftarrow \left(\frac{F^i}{F^{i+1}}\right) \otimes R \leftarrow 0.$$

Moreover, Feigin and Tsygan [6] show that

 $0 \to \operatorname{Kos}^* \to D^* \to D^{*-1} \to 0,$

where the complex $(D^*)_i$ is given by

$$\cdots \leftarrow 0 \leftarrow \Omega^{N}_{R/K}/F^{i-N+1}\Omega^{N}_{R/K} \leftarrow \Omega^{N-1}_{R/K}/F^{i-N+2}\Omega^{N-1}_{R/K} \leftarrow \cdots \leftarrow R/F^{i+1}R \leftarrow 0.$$

The cohomology of this complex computes the *i*th level crystalline cohomology (cf. [6].) We then get the following long exact sequence on homology, see [16]:

$$\rightarrow H^{N-1}(\mathrm{Kos}_{N+l-1}^{*}) \rightarrow H^{N-1}(D_{N+l}^{*}) \rightarrow H^{N-1}(D_{N+l-1}^{*}) \rightarrow H^{N}(\mathrm{Kos}_{N+l}^{*}) \rightarrow H^{N-1}(D_{N+l-1}^{*}) = \frac{\mathrm{Ker}(\Omega_{R/K}^{N-1}/F^{l+1}\Omega_{R/K}^{N-1}) \rightarrow \Omega_{R/K}^{N}/F^{l}\Omega_{R/K}^{N})}{\mathrm{Im}(\Omega_{R/K}^{N-2}/F^{l+2}\Omega_{R/K}^{N-2}) \rightarrow \Omega_{R/K}^{N-1}/F^{l+1}\Omega_{R/K}^{N-1})}.$$

In [6] Feigin and Tsygan define K-vector space isomorphisms ϕ , ψ for all indices *n*. From their Theorem 5 [6, p.130], we get that for any positive integer *l* the following diagram commutes:

$$\operatorname{HH}_{N+2l+1}^{(N+l)}(A) \xrightarrow{I} \operatorname{HC}_{N+2l+1}^{(N+l)}(A) \xrightarrow{S} \operatorname{HC}_{N+2l-1}^{(N+l-1)}(A) \xrightarrow{B} \operatorname{HH}_{N+2l}^{(N+l)}(A)$$

$$\simeq \bigcup \psi \qquad \simeq \bigcup \phi \qquad \simeq \bigcup \psi$$

$$H^{N-1}(\operatorname{Kos}_{N+l-1}^{*}) \longrightarrow H^{N-1}(D_{N+l}^{*}) \longrightarrow H^{N-1}(D_{N+l-1}^{*}) \xrightarrow{\varepsilon} H^{N}(\operatorname{Kos}_{N+l}^{*})$$

In the above long exact sequence $\varepsilon : H^{N-1}(D^*_{i-1}) \to H^N(\operatorname{Kos}^*_i)$ is the connecting homomorphism. Since the Kähler map $d : \Omega^{N-1}_{R/K} \to \Omega^N_{R/K}$ is surjective, the induced map

$$\tilde{d} : \Omega_{R/K}^{N-1}/F^{k+1}\Omega_{R/K}^{N-1} \to \Omega_{R/K}^N/F^k\Omega_{R/K}^N$$
 for all integers $k > 0$,

is surjective as well. Hence $H^N(D^*_{N+l})$ is zero and the result follows by [6, Theorem 5].

Let 2i - n = N with $n \ge N$ and consider the following sequence, which is exact by Proposition 2:

$$(*) \qquad 0 \to \operatorname{HC}_{n+2}^{(i)}(A) \xrightarrow{S} \operatorname{HC}_{n}^{(i-1)}(A) \xrightarrow{B} \operatorname{HH}_{n+1}^{(i)}(A) \xrightarrow{I} \operatorname{HC}_{n+1}^{(i)}(A) \xrightarrow{S} \xrightarrow{S} \operatorname{HC}_{n-1}^{(i-1)}(A) \xrightarrow{B} \operatorname{HH}_{n}^{(i)}(A) \xrightarrow{I} \operatorname{HC}_{n}^{(i)}(A) \xrightarrow{S} \operatorname{HC}_{n-2}^{(i-1)}(A) \to 0.$$

Corollary 1. Let 2i - n = N with $n \ge N$ as before, then: (a) $\operatorname{HC}_n^{(i)}(A) = 0$. (b) $I : \operatorname{HH}_n^{(i)}(A) \to \operatorname{HC}_n^{(i)}(A)$ is the zero map. (c) if n > N then the map $S : \operatorname{HC}_{n+1}^{(i)}(A) \to \operatorname{HC}_{n-1}^{(i-1)}(A)$ is not surjective.

Proof. Note that we have $\operatorname{HC}_{N}^{(N)}(A) = H_{dR}^{N}(A) = 0$. The results then follow from the exactness of the part (*) of the S-B-I sequence, Lemma 3 and induction. In particular we have that: $\operatorname{coker}(S : \operatorname{HC}_{n+1}^{(i)}(A) \to \operatorname{HC}_{n-1}^{(i-1)}(A)) \simeq \Omega_{A/K}^{N} \neq 0$.

Lemma 4. If 2i - n = N with $n \ge N$ then, $B : HC_n^{(i-1)}(A) \to HH_{n+1}^{(i)}(A)$ is the zero map and we have:

$$\operatorname{HC}_{n+2}^{(i)}(A) \simeq^{S} \operatorname{HC}_{n}^{(i-1)}(A) \simeq \boldsymbol{H}_{\operatorname{dR}}^{N-2}(A).$$

In particular $HC_n^{(i)}(A)$ is finite dimensional.

Proof. From Proposition 1 we know that $HC_N^{(N-1)}(A) = H_{dR}^{N-2}(A)$. By [6] we have that

$$\operatorname{HC}_{N-2+2l}^{(N-2+l)}(A) \simeq H^{N-2}(D_{N-2+l}^*)$$

for all $l \ge 1$. Moreover, from (*) and induction on *i* we know that the *S* maps $S : \operatorname{HC}_{n+2}^{(i)}(A) \mapsto \operatorname{HC}_{n}^{(i-1)}(A)$ are injections. Hence we get injections from $\operatorname{HC}_{n+2}^{(i)}(A)$ into $\operatorname{H}_{dR}^{N-2}(A)$.

On the other hand, we know by [2, Theorem 5(b)] that $\dim_K H^{N-2}(D^*_{N-2+l}) \ge \dim_K H^{N-2}_{d\mathbb{R}}(R/F^lR)$. Since F is reduced we have by [22, Exercise 9.9.5 p. 359] that $H^{N-2}_{d\mathbb{R}}(R/F^lR) = H^{N-2}_{d\mathbb{R}}(A)$. Hence we have for all $l \ge 1$ that $\operatorname{HC}_{N-2+2l}^{(N-2+l)}(A) = H^{N-2}_{d\mathbb{R}}(A)$. \Box

Corollary 2. Again let 2i - n = N with $n \ge N$, then: (a) The map $I : HH_{n+1}^{(i)}(A) \to HC_{n+1}^{(i)}(A)$ is injective. (b) $\dim_K HC_n^{(i-1)}(A) < \infty$.

Lemma 5. Let 2i - n = N with $n \ge N$, then: (a) $\dim_K \operatorname{HC}_{n-1}^{(i-1)}(A) = \dim_K H_{dR}^{N-1}(A) + \dim_K T(\Omega_{A/K}^{N-1})$. (b) $\operatorname{Ker}(B : \operatorname{HC}_{n-1}^{(i-1)}(A) \to \operatorname{HH}_n^{(i)}(A)) \simeq H_{dR}^{N-1}(A)$.

Proof. By Lemmas 3 and 4 we can split up (*) as follows:

$$0 \to \operatorname{HH}_{n+1}^{(i)}(A) \xrightarrow{I} \operatorname{HC}_{n+1}^{(i)}(A) \xrightarrow{S} \operatorname{Im}(S) \to 0,$$

and

$$0 \to \operatorname{Ker}(B) \to \operatorname{HC}_{n-1}^{(i-1)}(A) \xrightarrow{B} \operatorname{HH}_{n}^{(i)}(A) \to 0,$$

where $\operatorname{Ker}(B) = \operatorname{Im}(S)$. By induction on *i* we then know that all $\operatorname{HC}_{n+1}^{(i)}(A)$'s have the same dimension. If i = n = N then by [15] we have $\operatorname{Ker}(B : \operatorname{HC}_{N-1}^{(N-1)}(A) \to$

 $\operatorname{HH}_{N}^{(N)}(A) \simeq H_{\mathrm{dR}}^{N-1}(A)$. (Note that both $T(\Omega_{A/K}^{N-1})$ and $H_{\mathrm{dR}}^{N-1}(A)$ are finite dimensional vector spaces.) Hence we have that

$$\dim_{K} \operatorname{HC}_{N-1}^{(N-1)}(A) = \dim_{K} \frac{\Omega_{A/K}^{N-1}}{d\Omega_{A/K}^{N-2}} = \dim_{K} H_{\mathrm{dR}}^{N-1}(A) + \dim_{K} \Omega_{A/K}^{N}$$
$$= \dim_{K} T(\Omega_{A/K}^{N-1}) + \dim_{K} H_{\mathrm{dR}}^{N-1}(A),$$

where the last equality follows from Proposition 3. \Box

Corollary 3. If A is a hypersurface with only isolated singularities over an algebraically closed field K of characteristic zero, then for $n \ge N-1$ we have that the nth pieces of cyclic homology are finite dimensional vector spaces. Moreover, the dimension of $\operatorname{HC}_n(A)$ only depends on the parity of n for $n \ge N$.

4. Cyclic homology of the nodal cubic

This section contains an explicit description of the Hodge-components of the plane nodal cubic defined by $F(x, y) = y^2 - x^2(x+1)$, i.e.,

$$A = K[x, y]/(y^2 - x^3 - x^2).$$

In particular we give bases for its de Rham cohomology modules. This example was also mentioned in [7, cf. A.6], where a different approach to finding $HC_n(A)$ was suggested. We have:

Proposition 4. The de Rham cohomology of the nodal cubic is given by

$$\boldsymbol{H}_{\mathrm{dR}}^{0}(A) = K, \qquad \boldsymbol{H}_{\mathrm{dR}}^{1}(A) \simeq K \cdot x^{2} \mathrm{d} y + \mathrm{d} A, \qquad \boldsymbol{H}_{\mathrm{dR}}^{2}(A) = 0$$

Proof. The coordinate ring of the nodal cubic is a domain. So we know that $H^0_{dR}(A) = K$. Moreover, $\Omega^2_{A/K} = K dx \wedge dy$, i.e., $H^2_{dR}(A) = 0$. Using the fact that

$$y\mathrm{d}y = \frac{(3x^2 + 2x)}{2}\mathrm{d}x$$

we have that

$$\frac{\Omega^1_{A/K}}{\mathrm{d}A} = \frac{(K \cdot x\mathrm{d}y + K \cdot x^2\mathrm{d}y + \mathrm{d}A)}{\mathrm{d}A}.$$

Hence

$$H^1_{\mathrm{dR}}(A) = \mathrm{Ker}(\tilde{d} : \Omega^1_{A/K}/\mathrm{d}A \to \Omega^2_{A/K}) = (K \cdot x^2 \mathrm{d}y + \mathrm{d}A)/\mathrm{d}A.$$

A generator for $T(\Omega^1_{A/K})$ as an A-module is given by

 $w = (\frac{3}{2}x + 1)y \, \mathrm{d}x - (x^2 + x) \, \mathrm{d}y.$

We sum up our findings in:

Theorem 2. Let A be the coordinate ring of the nodal cubic defined over an algebraically closed field K of characteristic zero by $F = y^2 - x^2(x+1)$, then $HC_0^{(0)}(A) = A$ and we have, for l > 0,

$$\operatorname{HC}_{2l}(A) = \boldsymbol{H}_{\mathrm{dR}}^0(A) = K,$$

and

$$\mathrm{HC}_{2l+1}(A)\simeq T(\Omega^{1}_{A/K})\oplus H^{1}_{\mathrm{dR}}(A)\simeq K\oplus K.$$

Acknowledgements

This paper is based on the last chapter of my Ph.D thesis [17] at UC Berkeley under the supervision of Prof. M. Wodzicki. It extends results of [21] and [4] for graded hypersurfaces with isolated singularities to the case of general hypersurfaces with isolated singularities. There is also a paper by R. Hübl [11] that obtains some of my results by different methods. The proof given here, however, uses very elementary methods. Moreover, none of the above papers addresses the finite dimensionality of the *n*th cyclic homology groups for positive, large *n*. Weibel [23] and Emmanouil [5] have obtained similar results for periodic cyclic homology. I would like to thank the referee and Prof. C.A. Weibel for several helpful comments.

References

- Buenos Aires group in Cyclic Homology, Hochschild and cyclic homology of hypersurfaces, Adv. Math. 95 (1992) 18-60.
- [2] Buenos Aires group in Cyclic Homology, Cyclic homology of hypersurfaces, J. Pure Appl. Algebra 83 (1992) 205-218.
- [3] T. Bloom and M. Herrera, De Rham cohomology of an analytic space, Invent. Math. 7 (1969) 275-296.
- [4] D. Burghelea and M. Vigué-Poirrier, Cyclic Homology of Commutative Algebras. I, Springer Lecture Notes, Vol. 1318 (Springer, Berlin, 1986) 51-72.
- [5] I. Emmanouil, Cyclic homology of affine algebras, Preprint.
- [6] B. Feigin and B. Tsygan, Additive K-theory and crystalline cohomology, Functional Anal. Appl. 19 (1985) 124–125.
- [7] S. Geller, L. Reid and C. Weibel, The cyclic homology and K-theory of curves, J. Reine Angew. Math. 393 (1989) 39-90.
- [8] M. Gerstenhaber and S.D. Schack, A Hodge-type decomposition for commutative algebras, J. Pure Appl. Algebra 48 (1987) 229–247.
- [9] A. Grothendieck, Éléments de géométrie algébrique III, Publ. Math. 11, 17 (1961, 1963).
- [10] R. Hartshorne, On the de Rham cohomology of algebraic varieties, Publ. Math. I.H.E.S. 45 (1975) 6-98.
- [11] R. Hübl, The cyclic homology of hypersurfaces with isolated singularities, Math. Ann. 299 (1994) 72-76.
- [12] A. Lago and A. Rodicio, Generalized Koszul complexes and Hochschild (co)homology of complete intersections, Invent. Math. 96 (1989) 205-230.
- [13] J.L Loday, Opérations sur l'homologie cyclique des algèbres commutatives, Invent. Math. 96 (1989) 205-230.

298

- [14] J.L Loday, Cyclic Homology, Springer Grundlehren, Vol. 301 (Springer, Berlin, 1993).
- [15] J.L Loday and D. Quillen, Cyclic homology and the Lie-algebra homology of matrices, Comment. Math. Helv. 59 (1984) 565-591.
- [16] S. Maclane, Homology, Springer Grundlehren (Springer, Berlin, 1963).
- [17] R. Michler, Hodge-components of cyclic homology of singular hypersurfaces, Ph.D Thesis, UC Berkeley, 1993.
- [18] R. Michler, Hodge-components of cyclic homology for quasi-homogeneous hypersurfaces, Astérisque 226 (1994) 321-334.
- [19] R. Michler, Torsion of differentials for quasi-homogeneous hypersurfaces, Rocky Mount. J. Math. 26(1) (1996) 229-236.
- [20] R. Michler, Torsion of differentials of affine hypersurfaces, J. Pure Appl. Algebra, 104 (1995) 81-88.
- [21] M. Vigué-Poirrier, Cyclic homology of algebraic hypersurfaces, J. Pure Appl. Algebra 72 (1991) 95-108.
- [22] C. Weibel, An Introduction to Homological Algebra (Cambridge University Press, Cambridge, 1994).
- [23] C. Weibel, The Hodge filtration of cyclic homology, Preprint.